Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension.
نویسندگان
چکیده
Flavanol-rich diets have been reported to exert beneficial effects in preventing cardiovascular diseases, such as hypertension. We studied the effects of chronic treatment with epicatechin on blood pressure, endothelial function, and oxidative status in deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Rats were treated for 5 weeks with (-)-epicatechin at 2 or 10 mg kg(-1)day(-1). The high dose of epicatechin prevented both the increase in systolic blood pressure and the proteinuria induced by DOCA-salt. Plasma endothelin-1 and malondialdehyde levels and urinary iso-prostaglandin F(2α) excretion were increased in animals of the DOCA-salt group and reduced by the epicatechin 10 mg kg(-1) treatment. Aortic superoxide levels were enhanced in the DOCA-salt group and abolished by both doses of epicatechin. However, only epicatechin at 10 mg kg(-1) reduced the rise in aortic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and p47(phox) and p22(phox) gene overexpression found in DOCA-salt animals. Epicatechin increased the transcription of nuclear factor-E2-related factor-2 (Nrf2) and Nrf2 target genes in aortas from control rats. Epicatechin also improved the impaired endothelium-dependent relaxation response to acetylcholine and increased the phosphorylation of both Akt and eNOS in aortic rings. In conclusion, epicatechin prevents hypertension, proteinuria, and vascular dysfunction. Epicatechin also induced a reduction in ET-1 release, systemic and vascular oxidative stress, and inhibition of NADPH oxidase activity.
منابع مشابه
Endothelin 1 activation of endothelin A receptor/NADPH oxidase pathway and diminished antioxidants critically contribute to endothelial progenitor cell reduction and dysfunction in salt-sensitive hypertension.
Circulating endothelial progenitor cells (EPCs) are reduced in hypertension, which inversely correlates with its mortality. Deoxycorticosterone acetate (DOCA)-salt hypertension features elevated endothelin (ET) 1 and oxidative stress. We tested the hypothesis that ET-1 induces EPC dysfunction by elevating oxidative stress through the ET(A)/NADPH oxidase pathway in salt-sensitive hypertension. B...
متن کاملEndothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms.
We have demonstrated recently [Callera, Touyz, Teixeira, Muscara, Carvalho, Fortes, Schiffrin and Tostes (2003) Hypertension 42, 811-817] that increased vascular oxidative stress in DOCA (deoxycorticosterone acetate)-salt rats is associated with activation of the ET (endothelin) system via ETA receptors. The exact source of ET-1-mediated oxidative stress remains unclear. The aim of the present ...
متن کاملResistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice.
Deoxycorticosterone acetate (DOCA)-salt hypertension has an important endothelin-1 (ET-1)-dependent component. ET-1-induced vascular damage may be mediated in part by oxidative stress and vascular inflammation. Homozygous osteopetrotic (Op/Op) mice, deficient in macrophage colony-stimulating factor (m-CSF), exhibit reduced inflammation. We investigated in osteopetrotic (Op/Op) mice the effects ...
متن کاملEffects of peroxisome proliferator-activated receptor-β activation in endothelin-dependent hypertension.
AIMS We analysed the chronic effects of the peroxisome proliferator-activated receptor β/δ (PPAR-β) agonist GW0742 on the renin-independent hypertension induced by deoxycorticosterone acetate (DOCA)-salt. METHODS AND RESULTS Rats were treated for 5 weeks with: control-vehicle, control-GW0742 (5 or 20 mg kg(-1) day(-1)), DOCA-vehicle, DOCA-GW0742 (5 or 20 mg kg(-1) day(-1)), DOCA-GSK0660 (1 mg...
متن کاملAldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Free radical biology & medicine
دوره 52 1 شماره
صفحات -
تاریخ انتشار 2012